Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Comparison of linear-mode avalanche photodiode lidar receivers for use at one micron wavelength

Identifieur interne : 004567 ( Main/Repository ); précédent : 004566; suivant : 004568

Comparison of linear-mode avalanche photodiode lidar receivers for use at one micron wavelength

Auteurs : RBID : Pascal:10-0424861

Descripteurs français

English descriptors

Abstract

Silicon avalanche photodiode (APD) detectors have been used in most space lidar receivers to date with a sensitivity that is typically hundreds of photons per pulse at 1064 nm, and is limited by the quantum efficiency, APD gain noise, dark current, and preamplifier noise. We have purchased and tested InGaAs avalanche photodiode based receivers from several US vendors as possible alternatives. We present our measurement results and a comparison of their performance to our baseline silicon APD. Using a multichannel scalar instrument, we observed undesired dark counts in some devices, even though the APDs were biased below the breakdown voltage. These effects are typically associated with over-biased Geiger-mode photon-counting, but we demonstrate that the probability distribution indicates their necessity at the high gains typically associated with operation slightly below the breakdown voltage. We measured the following parameters for our 0.8 mm diameter baseline silicon APD receiver: excess noise factor 2.5, bandwidth 210 MHz, minimum detectable pulse (10 ns) in incident photons 110 photons, noise equivalent power 30 fW/rt-Hz. We present our test procedures and results for the InGaAs based APD receivers.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:10-0424861

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Comparison of linear-mode avalanche photodiode lidar receivers for use at one micron wavelength</title>
<author>
<name sortKey="Krainak, Michael A" uniqKey="Krainak M">Michael A. Krainak</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>NASA Goddard Space Flight Center, Code 554</s1>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>NASA Goddard Space Flight Center, Code 554</wicri:noRegion>
</affiliation>
</author>
<author>
<name>XIAOLI SUN</name>
</author>
<author>
<name>GUANGNING YANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>NASA Goddard Space Flight Center, Code 554</s1>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>NASA Goddard Space Flight Center, Code 554</wicri:noRegion>
</affiliation>
</author>
<author>
<name>WEI LU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>MEI Technologies, MD</s1>
<s2>Seabrook, MD 20706</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">10-0424861</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 10-0424861 INIST</idno>
<idno type="RBID">Pascal:10-0424861</idno>
<idno type="wicri:Area/Main/Corpus">003E19</idno>
<idno type="wicri:Area/Main/Repository">004567</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0277-786X</idno>
<title level="j" type="abbreviated">Proc. SPIE Int. Soc. Opt. Eng.</title>
<title level="j" type="main">Proceedings of SPIE, the International Society for Optical Engineering</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Avalanche photodiodes</term>
<term>Gallium Arsenides</term>
<term>Indium Arsenides</term>
<term>Lidar</term>
<term>Noise</term>
<term>Photon counting</term>
<term>Probability distribution</term>
<term>Quantum optics</term>
<term>Quantum yield</term>
<term>Silicon</term>
<term>Ternary compounds</term>
<term>ns range</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Comptage photon</term>
<term>Bruit</term>
<term>Lidar</term>
<term>Loi probabilité</term>
<term>Rendement quantique</term>
<term>Composé ternaire</term>
<term>Gallium Arséniure</term>
<term>Indium Arséniure</term>
<term>Photodiode avalanche</term>
<term>Silicium</term>
<term>Domaine temps ns</term>
<term>Optique quantique</term>
<term>As Ga In</term>
<term>InGaAs</term>
<term>0130C</term>
<term>4250A</term>
<term>8560D</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Bruit</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Silicon avalanche photodiode (APD) detectors have been used in most space lidar receivers to date with a sensitivity that is typically hundreds of photons per pulse at 1064 nm, and is limited by the quantum efficiency, APD gain noise, dark current, and preamplifier noise. We have purchased and tested InGaAs avalanche photodiode based receivers from several US vendors as possible alternatives. We present our measurement results and a comparison of their performance to our baseline silicon APD. Using a multichannel scalar instrument, we observed undesired dark counts in some devices, even though the APDs were biased below the breakdown voltage. These effects are typically associated with over-biased Geiger-mode photon-counting, but we demonstrate that the probability distribution indicates their necessity at the high gains typically associated with operation slightly below the breakdown voltage. We measured the following parameters for our 0.8 mm diameter baseline silicon APD receiver: excess noise factor 2.5, bandwidth 210 MHz, minimum detectable pulse (10 ns) in incident photons 110 photons, noise equivalent power 30 fW/rt-Hz. We present our test procedures and results for the InGaAs based APD receivers.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0277-786X</s0>
</fA01>
<fA02 i1="01">
<s0>PSISDG</s0>
</fA02>
<fA03 i2="1">
<s0>Proc. SPIE Int. Soc. Opt. Eng.</s0>
</fA03>
<fA05>
<s2>7681</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Comparison of linear-mode avalanche photodiode lidar receivers for use at one micron wavelength</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Advanced photon counting techniques IV : 7-8 April 2010, Orlando, Florida, United States</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>KRAINAK (Michael A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>XIAOLI SUN</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>GUANGNING YANG</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>WEI LU</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>ITZLER (Mark A.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>CAMPBELL (Joe C.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>NASA Goddard Space Flight Center, Code 554</s1>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>MEI Technologies, MD</s1>
<s2>Seabrook, MD 20706</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA18 i1="01" i2="1">
<s1>SPIE</s1>
<s3>USA</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s2>76810Y.1-76810Y.13</s2>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA25 i1="01">
<s1>SPIE</s1>
<s2>Bellingham, Wash.</s2>
</fA25>
<fA26 i1="01">
<s0>978-0-8194-8145-0</s0>
</fA26>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21760</s2>
<s5>354000174691730220</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>13 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>10-0424861</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Proceedings of SPIE, the International Society for Optical Engineering</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Silicon avalanche photodiode (APD) detectors have been used in most space lidar receivers to date with a sensitivity that is typically hundreds of photons per pulse at 1064 nm, and is limited by the quantum efficiency, APD gain noise, dark current, and preamplifier noise. We have purchased and tested InGaAs avalanche photodiode based receivers from several US vendors as possible alternatives. We present our measurement results and a comparison of their performance to our baseline silicon APD. Using a multichannel scalar instrument, we observed undesired dark counts in some devices, even though the APDs were biased below the breakdown voltage. These effects are typically associated with over-biased Geiger-mode photon-counting, but we demonstrate that the probability distribution indicates their necessity at the high gains typically associated with operation slightly below the breakdown voltage. We measured the following parameters for our 0.8 mm diameter baseline silicon APD receiver: excess noise factor 2.5, bandwidth 210 MHz, minimum detectable pulse (10 ns) in incident photons 110 photons, noise equivalent power 30 fW/rt-Hz. We present our test procedures and results for the InGaAs based APD receivers.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B00A30C</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B40B50A</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D03F15</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Comptage photon</s0>
<s5>03</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Photon counting</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Bruit</s0>
<s5>04</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Noise</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Lidar</s0>
<s5>11</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Lidar</s0>
<s5>11</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Loi probabilité</s0>
<s5>23</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Probability distribution</s0>
<s5>23</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Ley probabilidad</s0>
<s5>23</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Rendement quantique</s0>
<s5>41</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Quantum yield</s0>
<s5>41</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Composé ternaire</s0>
<s5>50</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Ternary compounds</s0>
<s5>50</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Gallium Arséniure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>51</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Gallium Arsenides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>51</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Indium Arséniure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>52</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Indium Arsenides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>52</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Photodiode avalanche</s0>
<s5>61</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Avalanche photodiodes</s0>
<s5>61</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Silicium</s0>
<s2>NC</s2>
<s5>62</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Silicon</s0>
<s2>NC</s2>
<s5>62</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Domaine temps ns</s0>
<s5>63</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>ns range</s0>
<s5>63</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Optique quantique</s0>
<s5>64</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Quantum optics</s0>
<s5>64</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>As Ga In</s0>
<s4>INC</s4>
<s5>75</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>InGaAs</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>0130C</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>4250A</s0>
<s4>INC</s4>
<s5>85</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>8560D</s0>
<s4>INC</s4>
<s5>91</s5>
</fC03>
<fN21>
<s1>277</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>Advanced photon counting techniques</s1>
<s2>04</s2>
<s3>Orlando FL USA</s3>
<s4>2010</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004567 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 004567 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:10-0424861
   |texte=   Comparison of linear-mode avalanche photodiode lidar receivers for use at one micron wavelength
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024